Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. A. Pott, Dr. M. Höding

Modulprüfung Mathematik II

Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SoSe 2015 15.07.2015

Name	Vorname	Fachrichtung	Matr.nummer
	Total In the following with the		BOTH STATE OF THE STATE OF

Anzahl der abgegebenen Blätter

Punktebewertung der Klausur

Aufgabe	1	2	3	4	5
max. Punkte	10	10	10	10	10
Punkte	9 30 3	315,000			1200

Unbenotete Leistung: Ja/Nein (Nichtzutreffendes streichen!)

Gesamtpunktzahl = 50	Zusatzpunkte	Note

Bitte beachten Sie folgende Hinweise!

- Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer.
- Beginnen Sie jede Aufgabe mit einem neuen Blatt und nummerieren Sie Ihre Blätter.
- Bitte die Anzahl der abgegebenen Blätter auf dem Deckblatt eintragen.
- Alle Aussagen müssen sorgfältig begründet werden.
- Erlaubte Hilfsmittel: Ein A4-Blatt Formelsammlung

Viel Erfolg!

- 1. Gegeben sei die Funktion $f: D \subseteq \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{\ln(x^2-3)}{4(x-2)}$.
 - (a) Bestimmen Sie den maximalen Definitionsbereich D von f.
 - (b) Ermitteln Sie die Nullstellen von f(x).
 - (c) Berechnen Sie die Grenzwerte $\lim_{x\to\infty} f(x)$ und $\lim_{x\to 2} f(x)$.
- 2. Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 2x e^{2x-1} & \text{für } x \le \frac{1}{2} \\ \frac{8x^2-1}{2x} & \text{für } x > \frac{1}{2} \end{cases}$$

- (a) Untersuchen Sie die Funktion f an der Stelle $x^* = \frac{1}{2}$ auf Stetigkeit.
- (b) Bestimmen Sie die $x \in \mathbb{R}$, für die die Funktion f differenzierbar ist und bestimmen Sie für diese x-Werte die 1. Ableitung f'(x).
- 3. Gegeben sei die Potenzreihe $P_{\infty}(x) = \sum_{k=0}^{\infty} 2^k x^k$.
 - (a) Bestimmen Sie den Konvergenzradius der Potenzreihe $P_{\infty}(x)$.
 - (b) Zeigen Sie, dass $P_2(x) = \sum_{k=0}^{2} 2^k x^k$ das Taylorpolynom $T_2(x)$ der Funktion $f: \mathbb{R} \setminus \{\frac{1}{2}\} \to \mathbb{R}$ mit $f(x) = \frac{1}{1-2x}$ zum Entwicklungspunkt $x_0 = 0$ ist.
 - (c) Ermitteln Sie einen Näherungswert für $f(\frac{1}{10})$ mithilfe des Taylorpolynoms $T_2(x) = P_2(x)$.

- 4. Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2y xy^2 3xy$.
 - (a) Bestimmen Sie die ersten partiellen Ableitungen von f.
 - (b) Zeigen Sie, dass der Gradient im Punkt (1,-1) gleich dem Nullvektor ist.
 - (c) Ermitteln Sie die Hesse-Matrix im Punkt (1,-1).
 - (d) Zeigen Sie, dass im Punkt (1, -1) ein lokales Maximum vorliegt.
- 5. Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = x^2 + y$.
 - (a) Bestimmen Sie $\int_{2}^{\infty} 2f(\frac{1}{t},0) dt = \int_{2}^{\infty} 2 \cdot \frac{1}{t^2} dt$.
 - (b) Berechnen Sie das Integral $\int_D f(\mathbf{x}) d\mathbf{x}$ über dem Normalbereich $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 2 x\}.$