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1 Cheat Sheet

Autor: Gerhard Gossen
This

”
cheat sheet“ contains basic definitions and spellings that you will need during

your studies and in the pre-course. We will usually assume that you have existing
knowledge on the content of the course.

1.1 Number sets

Symbol Description Examples

N Natural numbers: positive integers. The 0
is usually included only if the notation N0 is
used

1; 2; 3; 454647;
8892349823

Z Integers: All positive and negative integers −2; −1; 0; 1; 2; 42;
−645631; 3469079

Q Rational numbers: numbers that can be ex-
pressed as a fraction of two integers

1
2
; 1

3
; 4

3
; − 6

23
;

0.2(= 1
5
)

R Real numbers 1.27;
√
2;π

C Complex numbers (see chapter 10) 2 + 3i; i;−6− 42i

Every number set contains all number sets above it: N ⊂ Z ⊂ Q ⊂ R ⊂ C

1.2 Sets

Sets can be represented in different ways. These are the two most important ones:

• Explicit listing: M = {a, b, c, d} contains the elements a, b, c, and d.

• Specification of a condition to be fulfilled: M = {x ∈ N | 0 < x < 42} contains
all natural numbers between 0 and 42 (excluding these two numbers).

Let A and B be two sets. Then the following operations are defined:

union intersection difference
A ∪B A ∩B A \B

• a is an element of A: a ∈ A.
• The empty set (∅) is the set that has no elements.

• Two sets are equal (A = B) if they both contain the same elements.
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1 Cheat Sheet

• Two sets are called disjoint if they have no common elements: A ∩B = ∅.

• A set A can be completely contained in another set B: A ⊆ B (read: A is a
subset of B). If A ̸= B holds, A is a proper subset of B (A ⊂ B).

• Analogously, A is a (proper) superset of B if the following holds: A ⊇ B
(A ⊃ B).

• The compliment of a set A of the set A contains all elements that are not
contained in A. If A is a subset of a carrier set X (or underlying set X), then:
A = X \A

small large Name Common use

α Alpha angle
β Beta angle
γ Γ Gamma angle
δ ∆ Delta δ: angle; ∆: difference
ε Epsilon very small positive number
η Eta
θ Theta θ: angle
λ Lambda multiplicative factor
µ My
ξ Xi
π Π Pi π = 3.14 . . . ; Π: product
ρ Rho
σ Σ Sigma Σ: sum
τ Tau
φ Φ Phi φ: angle (in polar coordinates)
χ Chi
ψ Ψ Psi
ω Ω Omega

Table 1.1: Selection of important Greek letters

1.3 Intervals

An interval is a contiguous range of numbers that is defined by its two endpoints.
A distinction is made between closed and open intervals. A closed interval [a, b]
contains a and b (inclusive), while an open interval (a, b) does not contain a and b
(exclusive).

It is possible to combine both types. This results in a half-open interval : [a, b)
contains a but not b, while (a, b ] contains b but not a.
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1.4 Abbreviations and vocabulary

Symbol Meaning

∃x there exists (at least) one x
∄x there does not exist any x
∀x for all x holds . . .
± plus/minus, e.g. x1,2 = ±1→ x1 = −1, x2 = +1
n∑
i=1

ai a1 + a2 + · · ·+ an

n∏
i=1

ai a1 · a2 · · · · · an

∞ infinite
∧ logical and
∨ logical or
¬ logical negation
:= is defined as
≡ is equivalent to
< less than (often also:

”
strictly less than“)

≤ less than or equal to
> greater than (often also:

”
strictly greater than“)

≥ greater than or equal to
= equal to
̸= not equal to
| divides
̸ | does not divide

Table 1.2: Important special characters

1.4 Abbreviations and vocabulary

iff (gdw. in German) Short for
”
if and only if“. The symbol ⇔ is also used.

qed At the end of a proof. Latin
”
quod erat demonstrandum“ (

”
that which was to

be shown / proved“). Meaning: Hurray, we’ve finally got through the proof. In
print the symbol □ is used.

commutative
”
interchangeable“. An operation (e.g. +, ·) is commutative if the two

operands can be interchanged without changing the result. Expressed as a
formula, this means: a ◦ b = b ◦ a, where ◦ stands for the operation.

distributive Factoring out is allowed: a · (b+ c) = a · b+ a · c

associative The order in which the operation is performed is arbitrary: a+ b+ c =
(a+ b) + c = a+ (b+ c).

there exists There is at least one element that fulfills the statement.
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1 Cheat Sheet

there exists exactly one There is only one element that fulfills the statement.

necessary condition This condition is always fulfilled if a statement is true. However,
there are also cases in which the condition is fulfilled even though the statement
is not true.

sufficient condition If this condition is met, the statement is true in any case. How-
ever, there are cases in which the statement is true but the condition is not
met.

necessary and sufficient condition Whenever this condition is met, the statement is
also true (and vice versa).
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2 Basic Mathematics

2.1 Fractions

Author: Katja Matthes

2.1.1 Definition

A fraction is the representation of a rational number as a quotient.

Fraction: Z
N

with Z ∈ Z and N ∈ Z \ {0}
Z . . . numerator N . . . denominator

Two fractions, a
b
and c

d
, are said to have the same name if they have the same

denominator: b = d.

2.1.2 Shortening and extending

A fraction is shortened by dividing both the numerator and the denominator by the
same number.

a · c
b · c

:c
=
a

b

A fraction is expanded by multiplying both the numerator and the denominator by
the same factor.

a

b

·c
=
a · c
b · c

2.1.3 Special rules of calculation

Adding fractions with the same denominator

Two fractions with the same denominator are added by adding their numerators and
taking the denominator.

a

b
+
c

b
=
a+ c

b

Subtraction of fractions with the same denominator

Two fractions with the same denominator are subtracted by subtracting their numer-
ators and keeping the denominator.

a

b
− c

b
=
a− c
b
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2 Basic Mathematics

Multiplication by a factor

A fraction is multiplied by a factor n by multiplying the numerator by this factor
and keeping the denominator.

a

b
· n =

a · n
b

Division by a number

A fraction is divided by a number n ̸= 0 by multiplying the denominator by this
number and keeping the numerator.

a

b
: n =

a

b · n

2.1.4 General rules of arithmetic

Addition

Two fractions are added by first making them equal and then adding the numerators.

a

b
+
c

d
=
a · d
b · d +

b · c
b · d =

a · d+ b · c
b · d

Subtraction

Two fractions are subtracted by first making them equal and then subtracting the
numerators.

a

b
− c

d
=
a · d
b · d −

b · c
b · d =

a · d− b · c
b · d

Multiplication

Two fractions are multiplied by multiplying the denominators and numerators.

a

b
· c
d
=
a · c
b · d

Division

A fraction is divided by another by multiplying it by its reciprocal.

a

b
:
c

d
=
a

b
· d
c
=
a · d
b · c
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2.1 Fractions

2.1.5 Exercises

Exercise 1

Calculate and simplify as far as possible.

1.
8
9
16
27

2.
2 1
3

1 1
6

3.
5 1
2

11
12

4.
99
100
9
10

Exercise 2

Calculate and simplify as far as possible.

1. 5
6
· 2
3
− 2

9
+ 3

4
· 1 7

9

2. 3 5
12
− 2 5

6
+ 1 1

3
: 4

9
− 2 1

6
· 1
2

Exercise 3

Calculate and simplify as far as possible.

1.
(
2
3
− 1

6

)
·
(

9
11
− 3

7

)
2.

(
1
8
+ 7

12

)
:
(
5− 3

4

)
3. 4

7
·
((
1 1
2
− 5

9

)
: 4 1

4

)
4. 4

5
:
[(

5
8
− 1

3

)
· 12
]

5. 3
4
·
(
2 1
2
: 1 1

4

)
Exercise 4

Calculate and simplify as far as possible.

1.
( 3
8
· 2
7 )

5
14

2.
1 3
4
+ 5

6
1
4

3.
8
9

3 1
3
+ 1

6

4.
( 3
5
− 5

10 ):
2
5

1
4
+ 1

2
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2 Basic Mathematics

2.2 Powers and Exponents

Author: Katja Matthes

2.2.1 Definition

Powers are an abbreviated way of writing repeated multiplication by a factor.

a · a · a · · · a︸ ︷︷ ︸ = an

n factors

an . . . power a . . . base n . . . exponent

2.2.2 Special exponents

Let a ∈ R \ {0} and n ∈ N0, then:

a0 = 1

a1 = a

a−n =
1

an

2.2.3 Power laws

The following power laws apply to all m, n ∈ Z and a, b ∈ R \ {0}.
1. Powers with the same base are multiplied by retaining the base and adding the

exponents.

am · an = am+n

2. powers with the same base are divided by retaining the base and subtracting
the exponents.

am

an
= am−n

3. powers with the same exponent are multiplied by multiplying the bases and
retaining the exponent.

an · bn = (a · b)n

4. Powers with the same exponent are divided by dividing the bases and keeping
the exponent.

an

bn
= (

a

b
)n

5. Powers are raised to a power by keeping the base and multiplying the exponents.

(am)n = am·n = an·m = (an)m
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2.2 Powers and Exponents

2.2.4 Roots

Let m,n ∈ N and a ∈ R with a > 0. Then

sqrt[n]am = a
m
n

Thus, the power laws also apply to roots. a is called the radicand and n the root
exponent.

2.2.5 Root laws

For m,n ∈ N with m,n > 1 and non-negative real radicands a and b the following
applies:

1. n
√
a · n
√
b = n
√
a · b

2.
n√a
n√
b
= n
√

a
b

3. n
√

m
√
a = mn

√
a = m

√
n
√
a

4. m
√
a · n
√
a =

mn
√
am+n

5.
m√a
n√a =

mn
√
an−m
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2.2.6 Exercise

Exercise 1

Simplify.

1. 3x4 − x4 − x3(x+ 2)

2. −12a2 + 3a(a+ 1)

3. axn + 4xn

4. (1− t)2 − 1
2
(1− t)2

5. a(x+ t)k − b(x+ t)k

6. tx3 − 3x2 + 2tx3 − 4x2

7. t3 · t4 − t5(t2 + 1)

8. x2 · x3 · x4

9. 3ak · ak−1 · a

10. bn · b2n+1

11. (x+ 1)n−1 · (x+ 1)n+1

12.
(
x
3

)4 · (x
3

)2

13. t2 · x2 · tn · xn−1

14. a · bk · a2n · bk−3

15. (x− 2)n · (x− 2)1−n

16. 0.36 ·
(
10
3

)6
17. 2x ·

(
5
2

)x · 5
18. 25 ·

(
1
2

)4
19.

(
x
4

)4 · 46
20. 2n ·

(
x
2

)n · x
21. 9 · 3n+1

22. (a− b)9 · (a− b)

23.
(
a−b
c

)2k · ( c
a−b

)2k
Exercise 2

Simplify.

1. a6

a3

2. x2n+1

xn

3. 15ex+1

5ex

4. x4

x7

5. 2a1−2n

4an+1

6. a4b4n+3

anb2n−1

7. 81
3x+3

8. (a−b)3
(a−b)n−1

9. (ab)3

x2y
· (xy)

2

a4b2

10. an+1

an

11. 103

23

12. 2.54

0.54

13. (10ab)k

(4b)k

14.
(
a
b

)n · a
b
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2.2 Powers and Exponents

15.
(

−1
a−b

)3
16.

(
x
2

)3
:
(
x
3

)
17. (−52)3

18. 3(c4)3 − 6c12

19. (3b2cn−1)4

20.
(

7a2

49b3

)2
21.

(−1
c3

)2n
22. (3bn+1 · cn−1)2

23. (x2y3z2)5

24. (0.5ex+2)2

25.
(

2
x2

)5 − ( 3
x5

)2
26.

[(
− 3
t

)3]4 · t9
81

27. (ab)2

x3y
· x

5y2

a2b

28. (4−12x)3

64

29. (2x−4)5

(2−x)3

30. (4ab)4

(6a2)4
· 5
b4

31. (a− b2) · (a− b2)n

Exercise 3

Simplify.

1.
(
1
2
x2
)5

+ 1
8
(x2)5 + (2x5)2

2. 1
4
· 24(22)3

3. (3n+1)2

4. (3x2 − 5x)(1− x3) + (x2 + 3x4)x3

5. a2rbr(a2r − arbr+1 + b2r+2)

Exercise 4

Simplify.

1. −3x3 · x2 + 5x · x4

2. 4tn−4t3 − t · tn−2

3. 2x5y3y − 4x3y2x2y2

4. 4x5+6x4−12x2

2x2

5. (9 · 3n − 3n+1) : 3n−1

6. (2x+ 6)2 + (x+ 3)2

7. 5a−20
4a−16

8. (3t2 − 3t3)2
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2 Basic Mathematics

Exercise 5

Factorise – write as a product by factoring out.

1. 3a2 + 6a3

2. 1
2
ex − 1

4
ex+1

3. a5b + 3ab

4. 2x + 2x+1

5. x4 + 2x3

6. xn+3 − 4xn+2

7. −6tn+2 + 18t2−n

8. ex − e3x

Exercise 6

Simplify.

1. x4−x3
x2−x

2. e3x+e2x

e2x

3. a7b3−ab7
a5b−a2b4

4. 32
2n+5 + 2−n+3

8

Exercise 7

Calculate.

1. y = 1
4
x4 − 2tx3 + 9

2
t2x2 with x = 3t

2. y = ex
2−t2 + 3e5t−(t−x) with x = −t

3. y = 3
2t2
x4 − 4

t
x3 + 3x2 − 4 with x = 1

3
t

4. y = e3tx+4e3

tx−4
with x = 1

t

5. y = tx3

2(x+t)2
with x = −3t

Exercise 8

Simplify.

1. 42
√√

x

2. 4
√
x · 3
√
x

3.
√
3

3√3

4.
√
2.5 ·

√
10
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Exercise 9

Multiply and simplify.

1. 1
4
· 2−4 · (22)3

2. (ex − e−x + 5)ex

3. 2x(2−1 + 2x)

4. (x4 + x−2)(x3 − x−3)

Exercise 10

Simplify/summarise.

1. a2 · (a2)−2 + 3a
(
1
a

)3
2. 1

18
· (32)2 + 1

2
· 33 ·

(
1
3

)2
3. (x2 · x−3)−2 +

(
3
x2

)−1

4. a5 · a−2 + 4a2 · a

5.
(
2
x

)3
+
(
1
x

)3

6. 1
e2x

+ 3(e−x)2 −
(

2
ex

)2
7. e−x · e−x+2 · e2x−3

8. 6x3 · x−1 − 8x4 · x−2

9. (t7 − t4) · t−3

Exercise 11

Simplify/summarise.

1. −23−2·4
2·23

2. (1−x)2
(x−1)

3. e3x+1

e−x+2

4. 1.5e3x−ex
1.5e3x

Exercise 12

Simplify/summarise.

1. a4 · a−6 − 3a3 · a−5 + a2

2. (an+2 − 4an − 2a2−n) · a
−2

2

3. 4x−4x7 − 0.5x4x−1 +
(

1
x2

)1.5
4. an+1

a
+ a2n−1

an+2 + (an−1)2 · a2−n

5. 22k

8
· 23−k + 2 · 2k−1

Exercise 13*

Simplify. (Hint: Make a case distinction.)

1. (a− b)n + (b− a)n

2. (x− 2)n + (2x− 4)n − (2− x)n
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2 Basic Mathematics

2.3 Binomial Formulas

Author: Katja Matthes

2.3.1 Definition

Binomial formulas are formulas for representing and solving quadratic binomials. They
make it easier to multiply out expressions in brackets and allow term transformations
of certain sums and differences into products. This is often the only solution strategy
for simplifying fractional terms, for rooting in root expressions and logarithmic
expressions.

2.3.2 Formulas

First binomial formula

(a+ b)2 = a2 + 2ab+ b2

The first binomial formula can be represented as shown in the following figure:
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a b

b
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a

a

The area of a square is equal to the length of its sides squared. In the figure, the
length of the sides of the square is (a+ b). Accordingly, the area of the entire square
is (a+ b)2.

The same area is also created by combining the shaded square (area: a2), the two
grey rectangles (area: 2 · ab) and the curly square (area: b2). The following legend is
therefore obtained:
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Legende

+       = 2ab

= a²

= b²

+ 2       +       = (a+b)²
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2.3 Binomial Formulas

Second binomial formula

(a− b)2 = a2 − 2ab+ b2

The second binomial formula can be illustrated by the following figure:
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a

b

b

a

We are looking for the area of the white square: (a− b)2. The entire square in the
figure has an area of a2. There are two other areas available for the calculation: the
tiled square alone has an area of b2 and, together with a grey rectangle, an area of ab.
To obtain the area we are looking for, we can first remove the two grey rectangles
from the entire square by subtracting 2 · ab (i.e. −2 · ab). However, this removes the
tiled square once too often, so that it has to be added back (+b2). This results in
the following legend:
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Legende

+ 2      +      = a²

= b²

= (a−b)²

−2 (        +       ) = −2ab
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Third binomial formula

(a+ b)(a− b) = a2 − b2

The third binomial formula can be explained with the help of the following two
images:

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

a−ba−b

b

a

a+b

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

a

b

b

a

a−b

a−b

Left image: The area of a rectangle is equal to the product of its side lengths, in
this case (a+ b) and (a− b).

Right image: We are looking for the area that consists of the shaded square and
the two grey rectangles. The easiest way to get this is to (again) subtract the small
white square (area: b2) from the entire square (area: a2).

This results in the following legend:
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Legende

+ 2       +       = a²

+ 2                = (a+b)(a−b)

−                         = −b²
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2.3 Binomial Formulas

2.3.3 Exercises

Exercise 1

Convert the following expressions using the binomial formula.

1. (4x+ 3y3)2

2. −(x4 − 2)2

3. (x2 − x3)(x2 + x3)

4. (3x2 + 2t)2

5. − 1
2
(x2 − 4)2

6.
(
− 1

2
(x2 − 4)

)2
7. x2y2(x4 + 2x2y + y2)

Exercise 2

Simplify. Use the binomial formulae.

1. (x− 3)n · (x+ 3)n

2. (a2−b2)3
(a−b)3

3. (4−x2)n
(2−x)n

4. (c−1)n−1

(c2−1)n−1

5. (a2n−b2n)2

(an−bn)2

6. (a3 − ab2)(a+ b)2

7. [(x−y)2]k

(x2−y2)k

8. (a+ b)4(a− b)4(a2 − b2)5

Exercise 3

Factorise/write as a product.

1. (3x− 6)
(
1
4
x2 − x+ 1

)
2. a2 − 2a3 + a4

3. 3a3 − 12a9

4. x4 − a2

5. 3− x2

6. x2n + 4xn + 4

7. xn+2 − 6xn+1 + 9xn

8. e2x − 1

9. x2ex + 2xex + ex
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Exercise 4

Simplify.

1. a3+2a2b+ab2

(a+b)2

2. a4−a2b2
ab−a2

3. t3+6t2+9t
t2−9

4. x2n−10xn+25
x2n−25

5. x6−t2
x4+tx

6. xn+3−xn+1

xn+1+xn

7. (x2+8xy+16y2)

(2x−3y)−2 : x
2−16y2

2x−3y

8. 4t2−4
t2+2t+1

9. xn−1−xn
xn−xn+2

10. 2(a2+b2)2

a5−ab4

11. x4−x3
x4−x2

12. x3y−xy5
x3y2−x2y4

13. am−an+bm−bn
a2−b2

Exercise 5

Multiply and simplify.

1. (ex + e−x)2

2. (a2 − a−2)2

3. (x−2 − 3x)(x−2 + 3x)

4. (2−x + 2x)(2−x − 2x)

Exercise 6

Simplify/summarise.

1. e2x−e−2x

ex−e−x 2.
(
x−y
a−b

)5
·
(
x−y
5

)−2 · (a−b)2
(x2−y2)
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2.4 Polynomial Division

2.4 Polynomial Division

Author: Gerhard Gossen Revision: Marko Rak

2.4.1 Definition of a Polynomial

A polynomial is a term of the form

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 an ̸= 0

where ai ∈ R, n ∈ N and x are variables.

The degree of a polynomial (grad p(x)) is the highest exponent of x. For example,
grad (3x2 + 2x5 − 25x) = 5.

2.4.2 Procedure

Given are two polynomials p(x) and q(x). The division p(x) : q(x) yields two new
polynomials:

p(x) : q(x) = s(x) +
r(x)

q(x)
.

Here r(x) is the
”
remainder“ of the division.

In the calculation, the highest terms are removed one after the other. To do this,
a term sk = bkx

k is sought that, when multiplied by the first term of q, gives the
first term of p. This term is multiplied by q and subtracted from p. The resulting
term p′ is of a lower degree than p. sk becomes the first term of s(x) (the

”
result

polynomial“). This procedure is repeated as long as possible, that is, as long as
grad p′(x) ≥ grad q(x).

2.4.3 Example

We want to calculate (−3− 3x2 + x+ x3) : (1 + x).

First, we arrange the polynomials according to their exponents: (x3−3x2+x−3) :
(x+1). In the first step, x3 is removed, so the first result term is x2, since x2 ·x = x3.
We then subtract x2(x+ 1) = x3 + x2.(

x3 − 3x2 + x− 3
)
:
(
x+ 1

)
= x2 +

x+ 1− x3 − x2

− 4x2 + x

Now we only have to calculate (−4x2 + x− 3) : (x+ 1). We continue to calculate
in the same way as long as possible.
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(
x3 − 3x2 + x− 3

)
:
(
x+ 1

)
= x2 − 4x+ 5 +

x+ 1− x3 − x2

− 4x2 + x
4x2 + 4x

5x− 3
− 5x− 5

− 8

We now calculate −8 : (x + 1). Since grad (−8) < grad (x + 1), the polynomial
division terminates here. −8 is the

”
remainder“ r(x) of the calculation.(

x3 − 3x2 + x− 3
)
:
(
x+ 1

)
= x2 − 4x+ 5 +

−8
x+ 1− x3 − x2

− 4x2 + x
4x2 + 4x

5x− 3
− 5x− 5

− 8

The result of (x3 − 3x2 + x− 3) : (x+ 1) is therefore x2 − 4x+ 5+ −8
x+1

. As a test,
we multiply the result by (x+ 1).

(x2 − 4x+ 5 +
−8
x+ 1

)(x+ 1) = x2(x+ 1)− 4x(x+ 1) + 5(x+ 1) +
−8
x+ 1

(x+ 1)

= (x3 + x2) + (−4x2 − 4x) + (5x+ 5) + (−8)

= x3 − 3x2 + x− 3

This is our original polynomial, so we have calculated correctly.

2.4.4 Further examples

(
4x5 − x4 + 2x3 + x2 − 1

)
:
(
x2 + 1

)
= 4x3 − x2 − 2x+ 2 +

2x− 3

x2 + 1− 4x5 − 4x3

− x4 − 2x3 + x2

x4 + x2

− 2x3 + 2x2

2x3 + 2x

2x2 + 2x− 1
− 2x2 − 2

2x− 3
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2.4 Polynomial Division

(
x4 + 2x3 − 3x2 − 8x− 4

)
:
(
x2 − 4

)
= x2 + 2x+ 1

− x4 + 4x2

2x3 + x2 − 8x
− 2x3 + 8x

x2 − 4
− x2 + 4

0

2.4.5 Tasks

Calculate.

1. (x3 + 1) : (x+ 1)

2. (x4 − x+ 1) : (x2 + x+ 1)

3. (x2 − 9) : (x+ 3)

4. (6x3 − 5x2 − 36x+ 35) : (3x− 7)

5. (x5 − x3 + x2 + x− 2) : (x2 − 1)

6. (3x3 + 2x2 + 4x+ 9) : (3x+ 5)

7. (2x5 + 8x4 + x3 − x2 + 12x+ 3) : (x2 + 4x+ 1)

8. (x6 − 2x5 + 9x4 − 8x3 + 15x2) : (x2 − x+ 5)

9. (2x7 − x6 + 3x5 − 1
2
x4 + x3) : (2x3 − x2 + 2x)

10. (x7 − 6x5 + x4 − 11x2 − 3x+ 1) : (x3 + 2)

11. (3x5 + 6x4 + 11
3
x3 + 4x2 + 20

3
x) : (3x4 + x3 + 4x)

25



3 Quadratic Equations

Author: Marc Mittner
R̈evision: Marko Rak, Julia Hempel, Johannes Jendersie

3.1 Definition

A quadratic equation is an equation that can be transformed into the form

ax2 + bx+ c = 0

with a, b, c ∈ R.
A quadratic equation is in normal form if a = 1, i.e.

x2 + px+ q = 0 with

p =
b

a
and

q =
c

a

3.2 Solving quadratic equations

Every quadratic equation of the form x2 + px+ q = 0 has either no, one or two real
solutions; in the case that the resulting parabola does not touch, touches or intersects
the x axis.

3.2.1 p-q formula

Every quadratic equation in normal form (x2+px+q = 0) with p2 ≥ 4q can be solved
using the p-q formula. The derivation is carried out using the quadratic complement:

x2 + px+ q = 0

x1,2 = −p
2
±
√(p

2

)2
− q

3.2.2 Midnight formula/Quadratic Formula

Any quadratic equation (ax2 + bx + c = 0) with a ̸= 0 can be solved using the
midnight formula:

x1,2 =
−b±

√
b2 − 4ac

2a
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3.3 Examples

3.2.3 Theorem of the zero product

A product is equal to zero if and only if one of its factors is equal to zero. If an
equation can be brought into the form xk · (ax2 + bx + c) = 0, then according to
the theorem of the zero product the equation has the solutions x1,2,..,k = 0 and the
solutions xk+1 and xk+2 can be solved using the midnight formula.

3.2.4 Substitution

If an equation has the form ax2k + bxk + c = 0, then xk can be substituted by a
variable u:

au2 + bu+ c = 0

This equation can then be solved as a quadratic equation. The results u1 and u2 are
then:

u1 = xk u2 = xk

x1,2 = k
√
u1 x3,4 = k

√
u2

The number of solutions is as follows:

• no solution if u < 0 and k is even

• one solution if −∞ < u <∞ and k is odd or u = 0 and k is even.

• two solutions if u > 0 and k is even

3.3 Examples

1. 3x2 + 3x− 36 = 0 Factor out:
3(x2 + x− 12) = 0
x2 + x− 12 = 0

Solve with the p-q formula ( p = 1 , q = −12 ):

x1,2 = − 1
2
±
√(

1
2

)2
+ 12

= − 1
2
±
√

49
4

= − 1
2
± 7

2

x1 = 3
x2 = −4

Factorised representation:
3(x− 3)(x+ 4) = 0
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3 Quadratic Equations

2. x7 + 19x4 − 216x = 0

Factorising:
x(x6 + 19x3 − 216) = 0

x1 = 0

Substitution of x3 = u:
u2 + 19u− 216 = 0

Solving with p-q formula (p = 19 , q = −216):
u1,2 = − 19

2
±
√(

19
2

)2
+ 216

= − 19
2
±
√

361
4

+ 864
4

= − 19
2
±
√

1225
4

= − 19
2
± 35

2

u1 = 8
u2 = −27

Resubstitution:
x3 = u1 yields the solutions
x3 = 8
x2 = 2

x3 = u2 yields the solutions
x3 = −27
x3 = −3

3.4 Tasks

For all tasks, the following applies: x, y, z ∈ R are variables and a, b, c ∈ R are fixed
parameters.

Solve the following equations:

1. x2 − x− 2 = 0

2. 4x2 + 16x− 84 = 0

3. 1

2
x2 + 3x+ 4 = 0

4. 4x2 + 48x+ 144 = 0

5. (x−
√
157)2 = 0

6. 7

3
x3 +

49

3
x2 + 35x+ 21 = 0
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3.4 Tasks

7. 7

4
x2 + 7x = −7

8. |x2| = 4

9. |x|2 = 4

10. |x2 − 4| = 2

11. x2 = x+ 12

12. 3x2 + 4x+ 1 = 0

13. x5 − 25x3 + 144x = 0

14. (x− π)(x+ π) = 0

15. x3 − 2x2

x− 2
+

2x2 + 4x

x+ 2
= 1

16. x4 − 14x3 + 59x2 − 70x = 0

17. 3x7 − 42x5 + 147x3 = 0

18. x12 = 4096

19. x4 + 4x3 + 6x2 + 4x+ 1 = 0

20. (
√
2x+ 2

√
2)2 = 0

21. 2ax2 − 12ax+ 18a = 0

22. 1

x2
+ 1 = 2

23. 4

x
+ x = 4
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4 Linear systems of equations

Author: Marko Rak

4.1 Definition

A linear system of equations is a set of m linear equations containing n unknowns. In
general, such a system of equations can always be represented in the following form:

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
. . .

...
am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

4.2 Linear dependence

A linear equation of the above form is linearly dependent if it can be represented by
the other equations of the system and by multiplication by a constant ci.

a11x1 + a12x2 + · · · + a1nxn − b1
= (a21x1 + a22x2 + · · · + a2nxn − b2) c2
+ (a31x1 + a32x2 + · · · + a3nxn − b3) c3
...

. . .
...

+ (am1x1 + am2x2 + · · · + amnxn − bm) cn

Otherwise, it is linearly independent of the other equations in the system.

4.3 Solvability

Whether a linear system of equations is solvable and how many solutions it has
depends on the case. One of the following cases always occurs

1. The system of equations has no solution.

x1 = 1
x1 = −1

2. The system of equations has exactly one solution.

x1 = 1
x1 + x2 = −1

The system of equations has several (usually an infinite number of) solutions.

x1 − x1 = 0
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4.4 Solving methods

Criteria for the solvability and the assignment of a linear system of equations to one
of these cases would anticipate the lecture content and will therefore not be explained
in detail here. In general, however, it can be said that if a linear system of equations
has more unknowns than linearly independent equations, it has several solutions.

4.4 Solving methods

In addition to the already known solving methods such as the equalisation method,
the substitution method, etc., there are also other systematic methods. These include,
among others, the Gauss method (also known as the Gauss algorithm), which uses
a simplified equation system representation to create a diagonal or triangular form.
This speeds up the process of finding solutions.

4.4.1 Simplified representation

A general linear system of equations

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
. . .

...
am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

can be simplified as follows:

x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

. . .
...

am1 am2 am3 · · · amn bm

Now the unknowns, since they are the same in all the equations of the system, are
only shown in the table header. If certain unknowns do not appear in equations of
the system, they are listed in this table with the factor 0. The equals sign is now
represented by the separation before the last column. The addition operators are
deliberately omitted and the subtraction is considered as addition with a negative
operand. Elementary transformations d̈o not change the solution of the linear system
of equations. Elementary transformations are understood to mean:

1. swapping columns or rows

2. multiplying a row by a constant

3. adding a multiple of one row to another
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4 Linear systems of equations

4.4.2 Diagonal form/reading the solution

The diagonal form of the above general linear system of equations looks like this:

x1 x2 x3 x4 · · · xn−1 xn
a11 a12 a13 a14 · · · a1(n−1) a1n b1
0 a∗22 a∗23 a∗24 · · · a∗2(n−1) a∗2n b∗2
0 0 a∗33 a∗34 · · · a∗3(n−1) a∗3n b∗3
0 0 0 a∗44 · · · a∗4(n−1) a∗3n b∗3
...

. . .
...

0 0 0 0 · · · a∗(m−1)(n−1) a∗(m−1)n b∗m−1

0 0 0 0 · · · 0 a∗mn b∗m

This scheme makes it relatively easy to find the solutions to the linear system of
equations. You start at the bottom and work your way up line by line. With each
new line, you can determine another unknown.
From the last line

a∗mnxn = b∗m

we get

xn =
b∗m
a∗mn

.

Now we insert xn into the second last line

a∗(m−1)(n−1)xn−1 + a∗(m−1)nxn = b∗m−1

and rearranged to xn−1

xn−1 =
b∗m−1 −

a∗(m−1)n

a∗mn
b∗m

a∗(m−1)(n−1)

This is continued line by line in ascending order until the first equation is reached,
so that all unknowns can be determined if a solution exists.

4.4.3 Gauss algorithm

The Gauss algorithm mentioned above is used to create the diagonal form from any
linear system of equations. To do this, the simplified representation is used and the
triangular form is created step by step using elementary transformations. In each
step, we select one equation and add a multiple of it to each other equation to create
a column with as many zeros as possible.
The initial situation is as follows:
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x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

. . .
...

am1 am2 am3 · · · amn bm

We select the first equation and add a multiple of it to the other equations to create
zeros in the first column.

x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1 ·(−a21

a11
) ·(−a31

a11
) · · · ·(−am1

a11
)

a21 a22 a23 · · · a2n b2 ←↩
a31 a32 a33 · · · a3n b3 ←↩
...

. . .
...

. . .

am1 am2 am3 · · · amn bm ←↩

This results in the following table after the first step:

x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1
0 a′22 a′23 · · · a′2n b′2
0 a′32 a′33 · · · a′3n b′3
...

. . .
...

0 a′m2 a′m3 · · · a′mn b′m

Now we select the second equation and add a multiple of it to each subsequent
equation to create zeros in the second column as well.

x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1

0 a′22 a′23 · · · a′2n b′2 ·(−a
′
32
a′22

) · · · ·(−a
′
m2
a′22

)

0 a′32 a′33 · · · a′3n b′3 ←↩
...

. . .
...

. . .

0 a′m2 a′m3 · · · a′mn b′m ←↩

Which brings us to the following table after the second step:
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4 Linear systems of equations

x1 x2 x3 · · · xn
a11 a12 a13 · · · a1n b1
0 a′22 a′23 · · · a′2n b′2
0 0 a′′33 · · · a′′3n b′′3
...

. . .
...

0 0 a′′m3 · · · a′′mn b′′m

This process is repeated until the desired diagonal form has been created and the
generated scheme can be solved as described above.

x1 x2 x3 · · · xn−1 xn
a11 a12 a13 · · · a1(n−1) a1n b1
0 a∗22 a∗23 · · · a∗2(n−1) a∗2n b∗2
0 0 a∗33 · · · a∗3(n−1) a∗3n b∗3
...

. . .
...

0 0 0 · · · 0 a∗mn b∗m

4.5 Examples

For all examples, xi ∈ R

1. A possible task could be to solve the following system of equations:

2x1 − 5x2 + 3x3 = 3
4x1 − 12x2 + 8x3 = 4
3x1 + x2 − 2x3 = 9

This system of equations can be simplified to the following form:

x1 x2 x3
2 -5 3 3
4 -12 8 4
3 1 -2 9
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4.5 Examples

The step-by-step transformation:

x1 x2 x3
2 -5 3 3 ·(−2) ·(− 3

2
)

4 -12 8 4 ←↩
3 1 -2 9 ←↩
2 -5 3 3
0 -2 2 -2 ·( 17

4
)

0 17
2

− 13
2

9
2

←↩
2 -5 3 3
0 -2 2 -2
0 0 2 -4

Thus, the last line directly gives 2x3 = −4 and therefore x3 = −2. This result
can in turn be inserted into the equation of the second line (−2x2 + 2x3 = −2).
The resulting equation −2x2 + 4 = −2 has the solution x2 = −1. The
results for x2 and x3 can now be inserted into the equation in the first line
(2x1 − 5x2 + 3x3 = 3) and, after rearranging, we obtain x1 = 2. The last three
equations therefore give the following result:

x3 = −2
x2 = −1
x1 = 2

The linear system of equations therefore has exactly one solution.

2. The initial situation is as follows:

3x1 − 1x2 + 2x3 = 1
7x1 − 4x2 − 1x3 = −2
−x1 − 3x2 − 12x3 = −5

and can be simplified to:

x1 x2 x3
3 -1 2 1
7 -4 -1 -2
-1 -3 -12 -5

Now the diagonal form is generated step by step.
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4 Linear systems of equations

To save space, all steps can be carried out in a table.

x1 x2 x3
3 -1 2 1 ·(− 7

3
) ·( 1

3
)

7 -4 -1 -2 ←↩
-1 -3 -12 -5 ←↩
3 -1 2 1
0 − 5

3
− 17

3
− 13

3
·(−2)

0 − 10
3

− 34
3

− 14
3

←↩
3 -1 2 1
0 − 5

3
− 17

3
− 13

3

0 0 0 4

Once the diagonal form has been created, the result can be easily derived as
described above. In this example, a contradiction arises in the last equation:

0x1 + 0x2 + 0x3 = 4.

Thus, the linear system of equations has no solution.

3. One last example in a nutshell.

x1 x2 x3
1 -2 3 4 ·(−3) ·(−2)
3 1 -5 5 ←↩
2 -3 4 7 ←↩
1 -2 3 4
0 7 -14 -7 ·(− 1

7
)

0 1 -2 -1 ←↩
1 -2 3 4
0 7 -14 -7
0 0 0 0

A zero row has been created, which occurs when two equations are linearly
dependent. Consequently, the linear system of equations now only has 2
(linearly independent) equations and 3 unknowns. We can choose any variable,
which leads to an infinite number of solutions for this linear system of equations.
We therefore set

x3 = t, t ∈ R

and now solve the other unknowns in dependence on t .

x2 = −1 + 2t
x1 = 2 + t

36



4.6 Tasks

4.6 Tasks

For all tasks, xi ∈ R and a, b ∈ R are fixed.

4.6.1 Simple systems of equations

Determine the solutions to the following systems of equations.

1. 7x1 + 8x2 + 5x3 = 3
3x1 − 3x2 + 2x3 = 1
18x1 + 21x2 + 13x3 = 8

2. x1 + 5x2 + 2x3 = 3
2x1 − 2x2 + 4x3 = 5
x1 + x2 + 2x3 = 1

3. x1 + x2 + 3x3 + 4x4 = −3
2x1 + 3x2 + 11x3 + 5x4 = 2
2x1 + x2 + 3x3 + 2x4 = −3
x1 + x2 + 5x3 + 2x4 = 1

4. x1 + 2x2 + 3x3 = −4
5x1 − x2 + x3 = 0
7x1 + 3x2 + 7x3 = −8
2x1 + 3x2 − x3 = 11

5. −x1 + x2 + x3 − x5 = 0
x1 − x2 − 3x3 + 2x4 − x5 = 2

3x2 − x3 − 5x4 − 7x5 = 9
3x1 − 3x2 − 5x3 + 2x4 + 5x5 = 2

6. x1 − 2x2 − 3x3 = −7
2x1 − x2 + 2x3 + 7x4 = −3
−2x1 + x2 + 3x3 + 3x4 = 8
x1 + 4x2 + 5x3 − 2x4 = 7

7. x1 − x2 + x3 = 4
x1 + 2x2 + x3 = 13
4x1 + 5x2 + 4x3 = 43
2x1 + 4x2 + 2x3 = 26
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4 Linear systems of equations

4.6.2 Parametrised systems of equations*

Determine the solutions of the following systems of equations in terms of a and b.

1. 2x1 − x2 + 4x3 = 0
x1 + 3x2 − x3 = 0
7x1 + 7x2 + (4− a)x3 = 0

2. x1 + x2 + x3 = 0
x1 + ax2 + x3 = 4
ax1 + 3x2 + ax3 = −2

3. x1 − 2x2 + 3x3 = 4
2x1 + x2 + x3 = −2
x1 + ax2 + 2x3 = b
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5 Absolute value and inequalities

5.1 Absolute value

Author: Marc Mittner
‘Revision: Christian Braune

5.1.1 Definition

For a real number x, the absolute value is defined as:

|x| =
{

x, x ≥ 0
−x, x < 0

5.1.2 The absolute value function

The graph of the absolute value function f(x) = |x| is:

• symmetric with respect to the y-axis

• y ≥ 0 for all values x ∈ R.

5.1.3 Rules for calculating the absolute value

1. | − a| = |a|

2. |a| ≥ 0; |a| = 0⇔ a = 0

3. |a · b| = |a| · |b|

4. |a
b
| = |a|

|b| for b̸= 0

5. |an| = |a|n for n∈ N

6. |a+ b| ≤ |a|+ |b| (so-called triangle inequality)
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5 Absolute value and inequalities

5.1.4 Examples

Equations with absolute values are solved by case distinction.

1. |x− 1| = 3

Case distinction

Case 1:

+(x− 1) = 3

x = 4

Case 2:

−(x− 1) = 3

x = −2

2. (x+ 3)2 = 4→ |x+ 3| = 2

Case distinction

1st case:

+(x+ 3) = 2

→ x = −1

2nd case:

−(x+ 3) = 2

→ −x− 3 = 2

→ x = −5

5.1.5 Tasks

Solve the following equations:

1. |x| = 7

2. |x+ 5| = 10

3. |2x− 3| = 1

4. |2x− 4| = 6x+ 36
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5.2 Inequalities

5.2 Inequalities

Author: Marc Mittner

‘Revision: Christian Braune

5.2.1 Definition

An inequality represents an order of two mathematical objects. Inequalities are
distinguished according to the number of variables and the power in which the
variables occur. The solution method varies depending on the type of inequality.

5.2.2 ”Equivalence transformation of inequalities

The following operations are permitted for transforming inequalities:

• Addition of a number a ∈ R on both sides.

• Subtraction of a number a ∈ R on both sides.

• Multiplication/division by a number a ∈ R, a > 0 on both sides.

• Multiplication/division by a number a ∈ R, a < 0 on both sides. Note that the
sign of the absolute value is reversed!

• When taking the square root, it is important to note that the inequality breaks
down into two parts:

x2 < a2 ⇔
−a < x < a⇔

|x| < a

”Change of the order signs when multiplying/dividing by a number a < 0:

• < becomes >, > becomes <

• ≤ becomes ≥, ≥ becomes ≤ The signs “=’‘ and “‘ ̸=”’ are retained.

The following transformations are not generally allowed:

• multiplication by 0 on both sides

• division by 0 on both sides

• squaring on both sides
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5 Absolute value and inequalities

5.2.3 Linear inequalities

A linear inequality is an inequality in which the variable is only contained in the first
power. Every linear inequality can be put into one of these three forms:

ax+ b > c or ax+ b ≥ c or ax+ b ̸= c

To solve a linear inequality, the variable is isolated by rearranging the terms:

Example:

3− 4x− 13 + 2x− 3x+ 12 ≤ 5 Combine

−5x+ 2 ≤ 5 | − 2

−5x ≤ 3 | ÷ (−5)

x ≥ −3

5

Graphical representation of the solution area:

General:

ax+ b ≤ c | − b
ax ≤ c− b | ÷ a (a > 0)

x ≤ c− b
a

5.2.4 Inequalities with several variables

Inequalities with several variables have a multidimensional solution space instead of
a one-dimensional one. The dimension increases with the number of variables. Thus,
an inequality system with two variables has a solution in R2 (i.e. in a plane) and
inequality systems with n variables have a solution in Rn.

Example: inequality with 2 variables

2x2 + 3− y − 2 > 2

2− 1

2
x <

1

2
y + 2
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5.2 Inequalities

To solve the system of inequalities, one variable is isolated first.

y < 2x2 − 1

y > −x

This results in:

2x2 − 1 > y > −x

Graphical representation of the solution set:

The marked area represents the solution set.
The points on the functions themselves are not included in the solution set.
There is no solution for the range −1 ≤ x ≤ 1

2
. For all other values of x, all points

for which the condition

2x2 − 1 > y > −x

is satisfied are included in the solution set.

5.2.5 Tasks

Inequalities with one variable

Solve the following systems of inequalities analytically:

1. 1

2
x2 − 1 > 0

2. (x+ 1)(x− 1) ≤ 0
√
x ≥ 1

3. Give the solution set of the system of inequalities in dependence on a.

ax2 > 0

1

2
x+ 1 > 0

43



5 Absolute value and inequalities

4. Give the solution set of the system of inequalities in dependence on a.

x2 + a > 0

1

2
x+ 1 > 0

5. Give the solution set of the system of inequalities in dependence on a.

−x2 + a < 0

x+ a < 0

6. (x− 1)2 − 4 < 0

−(x+ 1)2 + 4 > 0

7.
√

(x− 1) ≥ 0

− 1

4x
+ 4 < 0

8. x4 − 16 ≤ 0

x3 + 1 ≥ 0

Inequalities with several variables

Graphically solve the following systems of inequalities:

1. −x2 + 5 < y

x(x− 3)2 > y

−x− 2 > y

2. 3x2 − 3x− 10 < −4 + y

y ≤ 1

2

3. 1

2
x2 − 3x ≤ y

y ≤ −x

17x3 − 1

2
= y

4.
y +

√
x3 + x2 − x− 1

x− 1
> 0

2

20
x− 1

3
y +

3

12
< 0

44



5.2 Inequalities

5. 1

2
x− 2 < y

1

2
x+ 2 > y

2x− 4 < y

2x+ 4 > y

−1

2
x− 2 < y

−1

2
x+ 2 > y

−2x− 4 < y

−2x+ 4 > y

6. ((sinx) +
1

2
)2 − 3

4
− y − (sinx)2 > 0

cos (x+
π

2
) +

1

2
< y

7.
∣∣∣∣ 1x
∣∣∣∣ > y

−1 + 7x2

x2y
> −y + 7

y

|x|+ y < 5

8. Calculate the area of the solution set for the inequality:

(2y − 3)2 + (3y + 2)2 + y − 10 ≥

∣∣∣∣∣4x+ 4( 1
2
x− 3

2
)2 − 9

x

∣∣∣∣∣+ 13y2

y ≤ −1

9. F”or which a is the area of the solution set equal to 2?

y ≥ 2

−|x|+ a ≤ y
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6 Complete induction

Author: Katja Matthes ‘Revision: Sebastian Nielebock

6.1 Principle

Complete induction is a mathematical method of proof. The aim of complete
induction is to prove the validity of a statement for all natural numbers n ≥∈ N0

(induction start).

1. Induction start
It is shown that the statement is true for the natural number n0 = 1 (or also
n0 = 0, 2, 3, ...).

2. Induction step

• Induction assumption: It is assumed that the statement is true for a fixed
natural number n.

• Induction statement: It is claimed that the statement also applies to the
following natural number n+ 1 under the assumption.

• Induction proof: The induction statement is proved using the induction
assumption.

3. Conclusion
The combination of the induction start and induction step shows that the
statement actually applies to all natural numbers n ≥ n0.

6.2 Insert: The summation sign

Many induction problems are formulated using summation signs. In order to be able
to better carry out some of the proofs, it is necessary to know a few rules.

6.2.1 General

The summation sign represents a shortcut for addition:

n∑
i=1

ai = a1 + a2 + · · ·+ an
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6.3 Example problem

6.2.2 Factoring out the last index

A very useful rule for induction proofs is to factor out the last index. This makes it
easy to show the induction step for many proofs:

n+1∑
i=l

ai =

(
n∑
i=l

ai

)
+ an+1

6.2.3 Associative law

m−1∑
i=l

ai +

n∑
i=m

ai =

n∑
i=l

ai

6.3 Example problem

Show: For all n ∈ N, the equation

n∑
k=1

2k = 2(2n − 1)

6.3.1 Induction start

We show that the statement is true for n0 = 1.

1∑
k=1

2k = 21 = 2 = 2(21 − 1)

(true statement)

6.3.2 Induction step

Induction Assumption: We assume that the assumption is valid for a fixed n ∈ N

n∑
k=1

2k = 2(2n − 1)

Induction hypothesis: We claim that the statement also applies to the next
number n+ 1 (i.e., n 7→ n+ 1):

n+1∑
k=1

2k = 2(2n+1 − 1)
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6 Complete induction

Induction proof : Using the induction hypothesis, the left side of the statement
is transformed into its right side.

n+1∑
k=1

2k =

n∑
k=1

2k + 2n+1 |according to induction hypothesis

= 2(2n − 1) + 2n+1 |power laws
= 2(2n − 1) + 2 · 2n |factor out 2
= 2(2n − 1 + 2n) |summarise

= 2(2 · 2n − 1) |power laws

= 2(2n+1 − 1)

6.3.3 Induction conclusion

Thus, by the principle of complete induction, the induction claim and thus also the
statement:

n∑
k=1

2k = 2(2n − 1)

for all n ∈ N is proven.

qed.

6.4 Problems

Equations

1. Proof: For all n ∈ N, the sum formula

n∑
k=1

k =
n(n+ 1)

2

2. Proof: For all n ∈ N, the sum formula

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

3. Proof: The sum of the first n even natural numbers is equal to n2 + n, i.e.

n∑
k=1

2k = n2 + n
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6.4 Problems

4. Proof: For all n ∈ N, the sum formula

n∑
k=1

1

k(k + 1)
=

n

n+ 1

5. The sum of the first n odd natural numbers 1 + 3 + 5 + ...+ 2n− 1 is to be
determined. Make a conjecture and prove it by complete induction.

6. The sum of 4 + 8 + 12 + ...+ 4n, i.e. the first n natural numbers divisible by 4,
is to be determined. Make a conjecture and prove it by complete induction.

7. Proof: For all n ∈ N, the sum formula (with 0 < q < 1) applies

n∑
k=0

qk =
1− qn+1

1− q

8. Proof: For all n ∈ N, the sum formula

n∑
k=1

1

(2k − 1)(2k + 1)
=

n

2n+ 1

9. Proof: For all n ∈ N, the sum formula

n∑
k=1

k

2k
= 2− n+ 2

2n

10. Proof:

n∑
k=0

(
2

3

)k
= 3 ·

(
1−

(
2

3

)n+1
)

Divisibility problems

1. Proof: For all natural numbers n, 8 is a divisor of 9n − 1

2. Proof: For all natural numbers n, 6 is a divisor of 7n − 1

3. Proofs: For all natural numbers n, a− 1 is a divisor of an − 1 with a ∈ R and
a > 1

4. Proofs that the term n3 + 6n2 + 14n is a multiple of 3 for all natural numbers.

5. Proofs: For all natural numbers n, 3 is a divisor of 22n − 1

6. Proof: For all natural numbers n, 6 is a divisor of n3 − n

7. Proof: For all natural numbers n, 3n2 + 9n is divisible by 6
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6 Complete induction

Inequalities

1. Prove the Bernoulli inequality: For all n ∈ N and x ≥ −1, (1+x)n ≥ 1+nx

2. Determine the smallest natural number n0 for which the following inequality is
true: n2 + 10 < 2n. Prove that the inequality is true for all natural numbers
n ≥ n0.

3. Prove: For all natural numbers n ≥ 3, n2 > 2n+ 1

4. Proof: For all natural numbers n ≥ 5: 2n > n2

5. Proof: For all natural numbers n ≥ 2:

n∑
k=1

1√
k
>
√
n

6. Proof: For all natural numbers n > 2:

n∑
k=1

1

n+ k
>

13

24
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7 Functions

Author: Gerhard Gossen

A function f is a mapping that assigns a value from the domain D(f) to exactly
one value from the range W (f). The usual representation is f : X → Y (say: f is
a mapping from X to Y ), where X is the domain (D(f) ⊆ X) and Y is the range
(W (f) ⊆ Y ). The domain and range are often R (the real numbers).

Common functions are, for example, straight lines (f(x) = m · x+ n), polynomials
(f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0), the trigonometric functions (sinx, cosx,

tanx, see section 7.1) or exponential functions (ax, see section ??). Figure ?? shows
the graphs of some functions.

Figure 7.1: Known Functions

All the functions we will be dealing with in the preliminary course are functions
with one variable, i.e. functions that depend on a single variable (usually x). The
properties of a function can be determined using a curve sketching (see section 7.3).
However, first we will introduce two important families of functions: the trigonometric
functions (angle functions, section 7.1) and the exponential functions (section ??).
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7 Functions

7.1 Trigonometric Functions

The trigonometric functions sin, cos, tan are the angular functions. They are defined
for angles in radians (e.g. x = π

2
). Angles in degrees (e.g. x = 90◦) can be converted

unambiguously into radians (90◦ ≡ π
2
). This is why the notation sin 90◦ is also

possible.

7.1.1 Definition

In a right-angled triangle, the following applies:

sinx =
opposite

hypotenuse

cosx =
adjacent

hypotenuse

tanx =
opposite

adjacent
=

sinx

cosx x Ankathete

Hy
po
th
en
us
e

G
e
g
e
n
k
a
th
e
te

These definitions can be generalised so that the functions are defined for all real
numbers (in the right-angled triangle: 0 ≤ x ≤ 90◦). This results in the following
functions:

sinx cosx

tanx

We can see that the cosine is only shifted by π
2
relative to the sine, so the following

applies:

sin
(π
2
+ x
)
= cosx cos

(π
2
− x
)
= sinx

Example:

cos
(π
2

)
= sin

(π
2
− π

2

)
= sin(0) = 0

sin

(
3π

2

)
= cos

(
π

2
− 3π

2

)
= cos(−π) = −1
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7.1 Trigonometric Functions

7.1.2 Periodicity and Symmetry

All trigonometric functions are periodic, i.e. all values repeat at regular intervals.
Thus, for any integer k:

sin(x+ 2kπ) = sinx cos(x+ 2kπ) = cosx tan(x+ kπ) = tanx

(Remember: 2π ≡ 360◦, so 2kπ is exactly k full circles).

Examples:

sin
(π
2

)
= sin

(
5π

2

)
= sin

(
9π

2

)
= sin

(
13π

2

)
= . . .

cos(π) = cos(3π) = cos(5π) = cos(7π) = . . .

tan
(π
4

)
= tan

(
3π

4

)
= tan

(
5π

4

)
= tan

(
5π

4

)
= . . .

The sine and cosine functions are symmetrical, the sine is symmetrical about the
origin, and the cosine is symmetrical about the y axis. Together with periodicity,
the following relationships follow:

sin(π − x) = sinx cos(π − x) = − cosx tan(π − x) = − tanx

sin(π + x) = − sinx cos(π + x) = − cosx tan(π + x) = tanx

sin(−x) = − sinx cos(−x) = cosx tan(−x) = − tanx

The sign therefore depends on the quadrant in which x is located. Figure 7.2 shows
this relationship.

The values for sinx, 0 ≤ x ≤ π
2
are sufficient to determine all values for sin and cos.

The most important values are given in the following table.

x in radians 0 π
6

π
4

π
3

π
2

x in degrees 0 30◦ 45◦ 60◦ 90◦

sinx 1
2

√
0 1

2

√
1 1

2

√
2 1

2

√
3 1

2

√
4

cosx 1
2

√
4 1

2

√
3 1

2

√
2 1

2

√
1 1

2

√
0

7.1.3 Inverse functions

The inverse functions of sin, cos and tan are arcsin, arccos and arctan (pronounced:
arcus sinus, arcus cosinus and arc tangent). Since the trigonometric functions are
periodic (e.g. sin(0) = sin(2π) = 0), there cannot be a unique inverse function (in this
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7 Functions

sinx +sinx − sinx − sinx
cosx − cosx − cosx +cosx
tanx − tanx +tanx − tanx

Figure 7.2: Symmetry of sine and cosine

example: is arcsin(0) equal to 0 or 2π?). Therefore, the functions are only invertible
in a certain range. These ranges are:

y = sinx − π

2
≤ x ≤ π

2
⇐⇒ x = arcsin y − 1 ≤ y ≤ 1

y = cosx 0 ≤ x ≤ π ⇐⇒ x = arccos y − 1 ≤ y ≤ 1

y = tanx − π

2
< x <

π

2
⇐⇒ x = arctan y y ∈ R

7.1.4 Trigonometric Pythagoras

For all x: sin2 x+ cos2 x = 1. This statement is also called trigonometric Pythagoras.
This can sometimes be used to simplify a term.

7.1.5 Addition theorems

The trigonometric functions have, among other things, these important properties:

sin(x1 + x2) = sinx1 cosx2 + cosx1 sinx2

sin(x1 − x2) = sinx1 cosx2 − cosx1 sinx2

cos(x1 + x2) = cosx1 cosx2 − sinx1 sinx2

cos(x1 − x2) = cosx1 cosx2 + sinx1 sinx2
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7.1 Trigonometric Functions

Examples:

sin(120◦) = sin(60◦ + 60◦) = sin(π
3
+ π

3
) (apply the addition theorem).

= sin π
3
cos π

3
+ cos π

3
sin π

3

= 1
2

√
3 cos π

3
+ cos

(
π
3

)
1
2

√
3 =
√
3cos π

3
(change cos to sin)

=
√
3 sin

(
π
2
− π

3

)
=
√
3 sin π

6

= 1
2

√
3

Test of symmetry:

sin(120◦) = sin
(
2π
3

)
= sin(π − π

3
) (using 7.1.2)

= sin(π
3
) = 1

2

√
3

7.1.6 Tasks

1. Using the table in section 7.1.2, calculate the following values:

a) sin 2π
3

b) sin 5π
6

c) sinπ

d) sin 3π
2

e) sin 11π
6

f) sin 7π
3

g) sin 29π
6

h) sin− 3π
4

i) cos π
6

j) cos π
4

k) cos π
3

l) cos π
2

m) cos 11π
6

n) cos 3π
4

o) cos 2π
3

p) cos 4π
6

q) cos 7π
3

r) cos− 11π
4

s) tan π
6

t) tan−π
3

Calculate the missing side lengths and angles. The notations correspond to the
drawing on the left.

α β a b c

1
√
2

2 4
1
2

√
3 1

2

4 3
π
6

1
π
3

2

a

α

β

b

c

2. * Derive the following statement:

sin(4α) = 4(sinα · cos3 α− sin3 α · cosα)

3. * Derive the following statement:

cos(2α) = 2 · cos2 α− 1

4. * A sphere with a radius of 1 encloses a cube. Determine the maximum side
length of the cube.
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7 Functions

7.2 Exponential functions and logarithms

7.2.1 Exponential functions

Exponential functions are functions of the form f(x) = ax, where a is a constant
number > 0. These functions have some common properties:

• f(x) > 0, i.e. in particular the function has no zero

• f(0) = 1, since a0 = 1 for all a

Figure 7.3: Graph of the function ax, with a ∈ {e, 10, 1
2
}.

The function has the following form depending on a:

a > 1 strictly monotonically increasing, for x→ −∞ f(x) tends to 0.

0 < a < 1 strictly monotonically decreasing, for x→∞ f(x) tends to 0.

a = 1 the function yields a constant 1 (f(x) = 1x).

A special exponential function is the e function f(x) = ex, which can be used to
describe many natural processes. e = 2.718281828459 . . . is Euler’s number. The e
function has the property that ex = (ex)‘ = (ex)′′ = (ex)(n), i.e. all derivatives of the
function are equal to the function.
The inverse function of the exponential function is the logarithm:

y = ax ⇐⇒ x = loga y.
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7.2 Exponential functions and logarithms

7.2.2 Logarithm

The logarithm loga b (spoken: logarithm of b to the base a) is the number c for which
ac = b. The logarithm is thus the inverse function of the exponential function.

Important logarithms are:

Natural logarithm logarithm to the base e: loge x = lnx

Decadic logarithm logarithm to the base 10: log10 x = lg x

Binary logarithm logarithm to the base 2: log2 x = ldx

7.2.3 Logarithm function

The graph of the logarithm function (Figure 7.3) behaves similarly to the graph of
the exponential function: depending on a, the graph is either strictly monotonically
decreasing (0 < a < 1) or strictly monotonically increasing (a > 1). The function is
only defined for positive numbers, the limit for x → 0 is ±∞. The function value
loga(1) is 0, regardless of a.

Figure 7.4: Graph of the function loga x, with a ∈ {e, 10, 1
2
}.

For large values of x (and n > 0), the following applies: loga(x) < n · x, so the
logarithm function grows more slowly than a linear function.

7.2.4 Logarithmic laws

loga(u · v) = loga u+ loga v

loga
u

v
= loga u− loga v

loga u
r = r · loga u
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7 Functions

7.2.5 Base change

A logarithm to an unusual base a can be calculated by converting it to a different
base b:

loga x =
logb x

logb a
, e.g. loga x =

lnx

ln a

This is useful because most calculators can only calculate logarithms to the base e
(key ln) and 10 (key log). All other logarithms have to be converted to these bases.

7.2.6 Tasks

1. Solve for x:

a) 1 = ex

b) 8 = 2x

c) 3 = 5ex

d) e = ex

e

e) 9 = ecx

f) 3 = log2 x

g) 0 = log42 x

h) 0 = 5 log5 x

i) 9 = 3 ln ex

2. Simplify:

a) lg 2 + lg 5

b) lg 5 + lg 6− lg 3

c) 3 ln a+ 5 ln b− ln c

d) 2 ln v − ln v

e) 1
2
log7 9− 1

4
log7 81

f) log3(x− 4) + log3(x+ 4) = 3

g) 2 log2(4−x)+4 = log2(x+5)−1

h) log5 x = log5 6− 2 log5 3

3. The growth of bacterial cultures can be described using the e function. The
number of bacteria at time t is a function N(t) that depends on the initial
number of bacteria (i.e. the value N0 := N(0)) and the growth rate k of the
bacterium (constant). This results in the formula: N(t) = N0e

kt.

For N0 = 100, k = 0.2:

a) How many bacteria are there at time t = 5 (10, 100)?

b) At what time t will there be 500 (10000) bacteria?
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7.3 Curve sketching, differentiation, integration

Author: Andreas Zöllner ‘Revision: Gerhard Gossen

A curve sketching helps us to “understand” a function. We get information about
the shape of the graph (e.g. number and location of extrema and turning points)
and about important points (e.g. zeros) of the function.
A curve discussion has a fixed sequence of steps. Some of these can be carried out by
mathematical programmes, but for more complex functions, your own brainpower
is required. The steps are: definition range, value range, zeros, (global) extrema,
turning points, behaviour in infinity, poles and asymptotes. With the help of this
data, the graph of the function can be sketched.

7.3.1 Domain

First, you should be clear about the domain D(f) of the function f : for which
values x ∈ R is f(x) defined? For example, the function 1

x−1
is not defined for x = 1

(division by 0!), and the logarithm function is only defined for positive values.
Isolated points at which f is not defined are called gaps in the definition. There
are various types of gaps in the definition, but we will not go into them here.
The domain is given as a set. Examples of various domains are given in Table 7.1.

Definition range Description

D(f) = R The definition range is the entire defini-
tion set.

D(f) = R \ {c} The function has a definition gap at the
point c.

D(f) = {x ∈ R | a < x < b ∧ x ≥ c} f is only defined in the intervals (a, b)
and [c,∞)

Table 7.1: Examples of domains

7.3.2 Range of values

The range of values W (f) is all the values that the function f takes on, i.e. all
values of f(x) with x ∈ D(f). The range of values is given as a set, analogous to the
domain.
The range of a function can usually be determined by considering continuity, extrema,
monotony and asymptotes.

7.3.3 Zeros

A point x0 ∈ D(f) is called a zero of the function f if

f(x0) = 0 ,
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holds.
To determine the zeros, we therefore have to find all solutions of the equation

f(x) = 0

.

7.3.4 Insert: Deriving a function

Since the derivative of the function is needed to determine the extrema and turning
points, the following section briefly explains what the derivative is and how it is
calculated. The first derivative f ′ indicates the slope of the tangents to the graph of
f . To the left of a maximum, the slope is positive, to the right of it it is negative
(see Fig. ??). If the derivative has the value 0, this corresponds to a tangent with a
slope of 0, i.e. a horizontal line. At a minimum, the slope of the tangents changes
accordingly from negative to positive.

Derivative rules

1. Factor rule: c · f(x)(c ∈ R, constant)⇒ c · f ′(x)

2. Sum rule: f(x) + g(x)⇒ f ′(x) + g′(x)

3. Product rule: f(x)g(x)⇒ f ‘(x)g(x) + f(x)g′(x)

4. Quotient rule:
f(x)

g(x)
(g(x) ̸= 0)⇒ f ′(x)g(x)− f(x)g′(x)

(g(x))2

5. Chain rule: f(g(x))⇒ f ′(g(x)) · g′(x)

Important derivatives

Function Derivative

c 0
xn n · xn−1

sinx cosx
cosx − sinx

tanx
1

cos2 x
ex ex

lnx 1
x

7.3.5 Insert: Integrating a function

The inverse function of the derivative is integration. We are therefore looking for a
function F whose derivative is the function f , i.e. F ′ = f . This function F is then
called the primitive of f and we also write

∫
f = F . If we are looking for this integral
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7.3 Curve sketching, differentiation, integration

for the function f in general, we also speak of an indefinite integral. However, if a
specific interval of integration is sought in the domain of definition, this is called
a definite integral. This definite integral then corresponds to the area between the
graph of the function and the x-axis in the range of this interval. The primitive
function is also required to calculate the definite integral and is then used in it:

b∫
a

f(x)dx = F (b)− F (a)

Integration rules

1. Factor rule:
∫
(c · x)dx (c ∈ R, constant)⇒ c ·

∫
f(x)dx

2. Power rule:
∫
xndx⇒ 1

n+1
xn+1 + c

3. Sum rule:
∫
(f(x) + g(x))dx⇒

∫
f(x)dx+

∫
g(x)dx

Important integrals

Function primitive function

1 x+ c
sinx − cosx+ c
cosx sinx+ c
ex ex + c
lnx x · (lnx− 1) + c

7.3.6 Extrema

To determine the extrema of a function f , the first two derivatives of f must exist.
A point x0 is an extremum of f if

1. f ‘(x0) = 0 (necessary condition)

2. f ′′(x0) ̸= 0 (sufficient condition)

If f ′′(x) > 0 then there is a local minimum, if f ′′(x) < 0 then there is a local
maximum.

The global extrema are obtained by additionally considering the behaviour of
the function at the boundaries of the domain. For example, if D(f) = R then these
are the values of limx→±∞ f(x).
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7.3.7 Turning points

At a turning point the curvature of the function graph changes, i.e. the graph changes
from a left-hand curve to a right-hand curve or vice versa.
The necessary criterion for a turning point at x0 is that the value of the second
derivative becomes zero: f ′′(x0) = 0. In addition, one of the following two conditions
must be met:

The value of the third derivative is not equal to zero: f ′′′(x0) ̸= 0. However, the
third derivative must exist.

The sign of the second derivative changes at x0: If there is no third derivative or
it is too difficult to calculate, the sign on both sides of x0 must be compared.

The second derivative indicates the change in slope. If the second derivative is positive,
the slope becomes steeper, so the graph curves to the left. A right-hand curve is
formed when the slope of the tangent decreases, i.e. when the second derivative is
negative.
A special form of a turning point is the saddle point, where both the first and second
derivatives are zero. An example of this is shown in Figure 7.6. Here you can see
that it is not enough to find a zero of the first derivative to determine the extrema;
the second derivative must also be checked.

x
1,0 1,5 2,0 2,5 3,0

y

0,0

0,5

1,0

1,5

Figure 7.5: Tangents of the func-
tion −(x− 2)2 +1 at the points
3
2
, 2, 5

2

x
0 0,5 1,0 1,5 2,0

0

0,5

1,0

1,5

2,0

Figure 7.6: Saddle point of the
function (x−1)3+1 at the point
x = 1

7.3.8 Behaviour at infinity, poles, asymptotes

The behaviour of the function f at infinity is understood to mean the limiting values

lim
x→∞

f(x) bzw. lim
x→−∞

f(x) ,

provided that they exist.
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7.3 Curve sketching, differentiation, integration

The asymptotes describe the behaviour of the function f at infinity and at poles
(a kind of gap in the definition) in more detail. The term “asymptotic” means
“‘approaching ”. An asymptote of the function f is a linear function

y = mx+ n for certain m,n ∈ R ,

to which the function f approaches.

7.3.9 Graph of the function

With the help of this information, the graph of the function can now be drawn easily.
To do this, you draw the zeros, extrema, inflection points and any asymptotes, which
gives you the rough structure. If necessary, you can still calculate the function values
for individual points to see, for example, the strength of the curvature.

7.3.10 Tasks

1. Calculate the derivatives of the following functions:

a) 6x2 − 5x+ 7

b) 25x4

c) x(x− 7)

d) (x2 + 1)(x+ 5)

e) (x− 2)ex

f) ln(x3 − 9)

g) (2x− 3)5

h) sin(2x)

i) 1
x2−9

2. Calculate the following indefinite integrals:

a)
∫
(3x2)dx

b)
∫
(5x3 − 2)dx

c)
∫
(x− 4)(x+ 1)dx

d)
∫

2
x
dx

e)
∫
(e2x)dx

3. Calculate the following definite integrals (area under the graph):

a)

2∫
0

(3x2)dx

b)

5∫
1

(x+ 1)dx

4. Perform a full curve sketching for these functions:

a) f(x) = −x3 + 3x− 2 b) g(x) = 3x2−12x
4x2−2
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8 Vectors

Author: Gerhard Gossen R̈evision: Marko Rak, Melanie Pflaume

8.1 Definition

The vector

−→x =


x1
x2
...
xn


is an n-dimensional vector. The components x1, x2, . . . , xn are real numbers. In the
lecture, instead of −→x , x is usually written.

Vectors of dimension 2 are geometrically interesting:

−→x =

(
x
y

)
and of dimension 3: −→x =

xy
z

 .

They can be represented as arrows pointing in a particular direction. They can also
be interpreted as displacements. The zero vector

−→
0 or 0 is the vector for which

all components x1, x2 . . . xn 0 are. The position vector of a point P is the vector
between the origin of the coordinate system and P . A scalar is a single number of
the same type as x1, x2, . . . , xn.

y

x

e

d

b

c

a

a =

(
4
6

)
= b; c =

(
−4
−6

)
= −1 · a; d =

(
−3
5

)
; e =

(
4
4

)
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8.2 Operations

8.2.1 Addition and subtraction

Two vectors are added by adding the individual components:

x+ y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn


Subtraction is analogous:

x− y =


x1
x2
...
xn

−

y1
y2
...
yn

 =


x1 − y1
x2 − y2

...
xn − yn


Examples:(

2
4

)
+

(
6
7

)
=

(
8
11

) (
3
7

)
+

(
0
0

)
=

(
3
7

) 1
2
3

+

4
5
6

 =

5
7
9


(
2
4

)
−
(
6
7

)
=

(
−4
−3

) (
3
7

)
−
(
0
0

)
=

(
3
7

)  12
−5
0

−
−74

3

 =

 19
−9
−3


Geometrically, the addition of the vectors a and b corresponds to the displacement
that results from moving first in the direction of a and then in the direction of b. As
can be seen in the diagram, the addition is commutative, i.e. a+ b = b+ a.

a

b

a

b
a+b

8.2.2 Multiplication by a scalar

A vector is multiplied by a scalar by multiplying each individual component is
multiplied by the scalar:

λ · x = λ ·


x1
x2
...
xn

 =


λ · x1
λ · x2

...
λ · xn
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Multiplication by the scalar 0 always results in the zero vector.

Examples:

1 ·

3
6
4

 =

3
6
4

 2 ·

1
2
3

 =

2
4
6

 −1 ·

 3
−3
3

 =

−33
−3

 0 ·

3
5
1

 =

0
0
0


Geometrically, multiplication corresponds to an extension by the factor λ.

−1a

a 2a

Vector a, scaled with λ = −1 (top) and λ = 2 (bottom).

8.3 Linear combination

Any vector b that can be represented as the sum b = λ1a1 + λ2a2 + · · · + λnan is
called a linear combination of the vectors a1, a2, . . . , an. The λi are real numbers.

8.4 Linear dependence

The vectors a1, . . . an are linearly independent if the equation

λ1a1 + λ2a2 + · · ·+ λnan =
−→
0

has only the trivial solution λ1 = λ2 = · · · = λn = 0. Otherwise the vectors are
linearly dependent.

If two or more vectors are linearly dependent, then one vector can be represented as
a linear combination of the other vectors.

Example: The vectors

2
5
1

 ,

6
2
8

 ,

5
6
5


are linearly dependent, since

1 ·

2
5
1

+
1

2
·

6
2
8

 =

5
6
5

 or 1 ·

2
5
1

+
1

2
·

6
2
8

+ (−1) ·

5
6
5

 =
−→
0
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8.5 Magnitude of a vector

The magnitude |a| of a vector is equal to the length of that vector. It is calculated as

|a| =

∣∣∣∣∣∣∣
a1...
an


∣∣∣∣∣∣∣ =

√√√√ n∑
i=1

a2i

Examples:∣∣∣∣(10
)∣∣∣∣ =√12 + 02 =

√
1 = 1∣∣∣∣(34

)∣∣∣∣ =√32 + 42 =
√
25 = 5∣∣∣∣∣∣∣∣∣∣


2
−3
1
7
−1


∣∣∣∣∣∣∣∣∣∣
=
√

22 + (−3)2 + 12 + 72 + 12 =
√
4 + 9 + 1 + 49 + 1 =

√
64 = 8

8.6 Scalar product

The scalar product (a, b) of the two vectors a and b is the real number

(a, b) = |a||b| cosα

where α is the angle between the vectors (alternatively: a · b).
The scalar product of two vectors of the nth order can also be calculated as follows:

x1
x2
...
xn

 ·


y1
y2
...
yn

 =

n∑
i=1

xi · yi

Usually, you want to check whether two vectors are orthogonal to each other. With
cos(90◦) = cos

(
π
2

)
= 0, we get:

(a, b)

|a||b| = 0
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Examples:

1. Angle between

(
1
0

)
and

(
0
1

)
:

cosα =

((
1
0

)
,

(
0
1

))
∣∣∣∣(10

)∣∣∣∣ ∣∣∣∣(01
)∣∣∣∣ = 10 + 01/11 = 0α = arccos(0) =

2. Angle between a =

−42
−2

 and b =

 10
−5
5



cosα =
(a, b)

|a||b|

=
−40 + (−10) + (−10)√

24
√
150

=
−60√

4 · 6
√
25 · 6

= − 60

2
√
6 · 5
√
6
= −60

60
= −1

α = arccos(−1) = π = 180◦

8.7 Cross product

The cross product of two three-dimensional vectors a and b (both not equal to the
zero vector) is a new vector. This is orthogonal to a and b. Notation: a× b.
The cross product for 3-dimensional vectors is calculated as follows:

a× b =

a1a2
a3

×
b1b2
b3

 =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1



Reminder: The value at the position • is given by (1) · (2)− (3) · (4, where (1), . . . , (4)
can be taken from the formula.

 • =

 1
3

×
 4

2

  •
 =

 3

1

×
 2

4

 
•

 =

 1
3

×
 4

2
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Examples:

1
2
3

×
4
5
6

 =

2 · 6− 3 · 5
3 · 4− 1 · 6
1 · 5− 2 · 4

 =

−36
−3


1
0
0

×
0
1
0

 =

0 · 0− 0 · 1
0 · 0− 1 · 0
1 · 1− 0 · 0

 =

0
0
1



8.8 Tasks

1. Given:

a =

 2
3
−1

 , b =

−41
5

 , c =

−2−2
−2

 , d =

7
9
1



Calculate:

a) a+ b− c+ d

b) d− c− b− a
c) 3a− 2b+ c

d) a− 1
2
c+ (−3)b+ 2d

e) 2a− b+ 5c− d
f) 3a− 5b+ 4c+ 2d

2. Calculate the length of the vectors:

a)

0
1
0


b)

2
3
2


c)

4
3
5


d)

−22
1


e)

(
3
−3

)

f)


2
−2
2
2
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3. Determine the scalar product:

a)

0
0
1

 ·
0
1
0

 b)

 2
−1
−3

 ·
−21

3

 c)

3
4
2

 ·
 2
−7
5


4. Determine the included angle:

a)

1
1
0

 ,

 0√
2
0

 b)

3
2
1

 ,

−51
13


Calculate the cross product:

a)

2
5
3

×
−12

2

 b)

1
0
2

×
3
4
7

 c)

−2−3
−1

×
−4−2
−7


5. Check whether the vectors are linearly dependent. If so, express one of the

vectors as a linear combination of the others. (Hint: Use the Gauss algorithm)

a)

(
1
0

)
,

(
1
1

)

b)

(
3
5

)
,

(
5
3

)

c)

(
1
2

)
,

(
7
3

)
,

(
17
5

)

d)

1
0
0

 ,

2
5
0

 ,

3
7
1



e)

7
2
5

 ,

 3
−5
8

 ,

 10
−3
13



f)

−2−3
4

 ,

1
0
1

 ,

7
6
5


g)

3
7
5

 ,

−25
1

 ,

−73
−3



h)


1
0
1
1

 ,


0
1
1
1

 ,


0
1
3
2

 ,


1
1
0
1



i)


1
0
2
1

 ,


1
0
1
1

 ,


0
1
0
1

 ,


0
0
1
1
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9 Matrices

Author: Martin Glauer
A matrix is nothing more than a tabular arrangement of elements from a set K with a
multiplication · and an addition +. They are used in many areas of computer science,
for example to calculate rotations of objects. A matrix with m rows (horizontal) and
n columns (vertical) is also called an m× n matrix (read: ‘m cross n matrix’ ) and,
correspondingly, the space that contains all m × n matrices is denoted by Km×n.
Similarly, the individual entries of a matrix A are given in the form Arow,column:

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

 inKm×n

1

9.1 Scalar multiplication

A matrix A ∈ Km×n can be multiplied (in the same way as the scalar product for
vectors) by an element λ from the space from which its entries originate.
To do this, all entries of the matrix are multiplied by this element

λ ·

A1,1 · · · A1,n

...
. . .

...
Am,1 · · · Am,n

 =

λ ·A1,1 · · · λ ·A1,n

...
. . .

...
λ ·Am,1 · · · λ ·Am,n



1This set must form a field. A structure that you will get to know in the course of your studies.
Informally speaking, a field is a set such that the operations + and · are similar to addition and
multiplication in the rational numbers Q (and are therefore also reversibly!).
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9.2 Addition

To add two matrices, the entries in the same positions are added:

A1,1 · · · A1,n

...
. . .

...
Am,1 · · · Am,n

+

B1,1 · · · B1,n

...
. . .

...
Bm,1 · · · Bm,n

 =

 A1,1 +B1,1 · · · A1,n +B1,n

...
. . .

...
Am,1 +Bm,1 · · · Am,n +Bm,n



9.2.1 Calculation rules

For all matrices A,B ∈ Km×nand scalars λ ∈ K the following applies:

• A+B = B +A

• (A+B) + C = A+ (B + C)

• λ(A+B) = λA+ λB

9.3 Transposition

The transpose AT of a matrix A ∈ Km×n is the mirror image about the main diagonal
A1,1, A2,2, ..., An,n: for example, if m > n (i.e. if A has more rows than columns):

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

...
An,1 An,2 · · · An,n
...

...
...

Am,1 Am,2 · · · Am,n



T

=


A1,1 A2,1 · · · An,1 · · · Am,1
A1,2 A2,2 · · · An,2 · · · Am,2
...

...
...

...
A1,n A2,n · · · An,n · · · Am,n



9.3.1 Calculation rules

The following applies to all matrices A,B and scalars λ ∈ K:

• (A+B)T = AT +BT

• (λA)T = λAT

• (AT )T = A
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9.4 Multiplication

If you want to calculate the product C ∈ Kk×n for two matrices A ∈ Kk×m, B ∈
Km×n, this is a little more complex:

Ci,j =

m∑
t=1

Ai,t ·Bt,j

Important! The number of columns in the left-hand matrix must match the number of
rows in the right-hand matrix. Furthermore, multiplication is generally not reversible
(commutative): A ·B ̸= B ·A.

9.4.1 The Falk scheme:

The Falk scheme (also known as the Falk diagram) offers a simplified form of
representation in which both matrices are written in the form shown in Figure ??.


B1,1 · · · B1,n

B2,1 · · · B2,n

...
. . .

...
Bm−1,1 · · · Bm−1,n

Bm,1 · · · Bm,n


A1,1 A1,2 · · · A1,m−1 A1,m

...
...

. . .
...

...
Ak,1 Ak,2 · · · Ak,m−1 Ak,m


 C1,1 · · · C1,n

...
. . .

...
Ck,1 · · · Ck,n



· ·
· ·

Figure 9.1: The Falk scheme

To calculate Ci,j , only the ith row of A and the jth column of B are considered.
First, the innermost entries are multiplied (Ai,m ·Bm,j) , which is iteratively repeated
all entries from the inside out: Ai,m−1 ·Bm−1,j , Ai,m−2 ·Bm−2,j , · · · , Ai,1 ·B1,j . The
entry Ci,j is then obtained from the sum of these products:

Ci,j = Ai,m ·Bm,j +Ai,m−1 ·Bm−1,j + · · ·+Ai,1 ·B1,j

73



9 Matrices

9.4.2 Calculation rules

• (A ·B) · C = A · (B · C)

• (A+B) · C = A · C +B · C

• A · (B + C) = A ·B +A · C

• (A ·B)T = BT ·AT

9.4.3 Matrices as systems of equations

A system of equations of the form

A1,1x1 + A1,2x2 + · · · + A1,nxn = b1
A2,1x1 + A2,2x2 + · · · + A2,nxn = b2

...
...

...
...

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm

can also be represented using vectors and matrices:


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

...
Am,1 Am,2 · · · Am,n



x1
x2
...
xn

 =


b1
b2
...
bm


i.e.:

A · −→x =
−→
b

9.5 Inverse Matrix

A square matrix A ∈ Kn×nis invertible if there is a matrix A−1 ∈ Kn×n such that:

A ·A−1 = A−1 ·A =


1 0 · · · 0 0
0 1 0
...

. . .
...

0 1 0
0 0 · · · 0 1


In this case, the matrix A−1is called the inverse of A matrix. A matrix for which
there is no inverse is called not invertible. The inverse matrix is determined in a
similar way to the Gaussian method:
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9.5 Inverse Matrix


A1,1 · · · A1,n 1 0 · · · 0
A2,1 · · · A2,n 0 1 0
...

...
...

. . .
...

An,1 · · · An,n 0 · · · 0 1


↓

1 · · · A1,n

A1,1

1
A1,1

0 · · · 0

A2,1 · · · A2,n 0 1 0
...

...
...

. . .
...

An,1 · · · An,n 0 · · · 0 1


↓

1 · · · A1,n

A1,1

1
A1,1

0 · · · 0

0 · · · A2,n − A2,1·A1,n

A1,1
0− A2,1

A1,1
1 0

...
...

...
. . .

...
An,1 · · · An,n 0 · · · 0 1


↓
...
↓

1 0 · · · 0 B1,1 · · · · · · B1,n

0 1 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 1 Bn,1 · · · · · · Bn,n



: A1,1

·(−A2,1);+

The matrix on the right is then the inverse matrix (B = A−1). Important: If there
is a 0 at the beginning of the first step, this row is swapped with a row further down
on both sides.
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9 Matrices

9.5.1 Example

Let the matrix A =

 2 0 4
1 1 3
2 −1 2

.

Divide the first row by 2 2 0 4 1 0 0
1 1 3 0 1 0
2 −1 2 0 0 1

 →

 1 0 2 1
2

0 0
1 1 3 0 1 0
2 −1 2 0 0 1


Subtract the first row from the second and subtract twice the first row from the third
row 1 0 2 1

2
0 0

1 1 3 0 1 0
2 −1 2 0 0 1

 →

 1 0 2 1
2

0 0
0 1 1 − 1

2
1 0

0 −1 −2 −1 0 1


Add the second row to the third row 1 0 2 1

2
0 0

0 1 1 − 1
2

1 0
0 −1 −2 −1 0 1

 →

 1 0 2 1
2

0 0
0 1 1 − 1

2
1 0

0 0 −1 − 3
2

1 1


Multiply the third row by −1 1 0 2 1

2
0 0

0 1 1 − 1
2

1 0
0 0 −1 − 3

2
1 1

 →

 1 0 2 1
2

0 0
0 1 1 − 1

2
1 0

0 0 1 3
2
−1 −1


Now we have the so-called upper triangular form. Now the procedure must be
repeated from the bottom up for the elements above the diagonal. Subtract the third
row from the second row 1 0 2 1

2
0 0

0 1 1 − 1
2

1 0
0 0 1 3

2
−1 −1

 →

 1 0 2 1
2

0 0
0 1 0 −2 2 1
0 0 1 3

2
−1 −1


Subtract twice the third row from the first row 1 0 2 1

2
0 0

0 1 0 −2 2 1
0 0 1 3

2
−1 −1

 →

 1 0 0 − 5
2

2 2
0 1 0 −2 2 1
0 0 1 3

2
−1 −1


This is the inverse:

A−1 =

 − 5
2

2 2
−2 2 1

3
2
−1 −1


9.5.2 Calculation rules

For invertible matrices A,B and λ ∈ K\{0}:

• (A ·B)−1 = B−1 ·A−1

•
(
A−1

)
T =

(
AT
)−1
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9.6 Tasks

•
(
A−1

)−1 = A

• (λA)−1 = 1
λ
A−1

9.6 Tasks

9.6.1 Task 1

The following matrices are given:

A =

(
1 0 1
1 1 1

)
, B =

1 2 3
2 3 1
3 1 2

 , C =

1 0 1
0 1 0
0 1 1


Calculate:

1. AT , BT and CT

2. B + C

3. A ·B

4. B ·AT

5. BT ·AT

6. ∗ B−1 (if possible)

7. ∗ C−1 (if possible)

9.6.2 Task 2

If possible, invert the following matrices:

1.

(
−1 1
2 −1

)

2.

1 0 2
2 3 4
3 0 2



3.

1 2 3
1 5 0
3 9 6
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10 Complex Numbers

Author: Andreas Zöllner

10.1 History

There is no real number x ∈ R that satisfies the equation

x2 = −1

. To formulate solutions to this equation, a number range extension must be carried
out. This is why R. Bombielli introduced the symbol

√
−1 in the middle of the

16th century, for which L. Euler later wrote i. This imaginary unit is defined as a
solution to the equation

i2 = −1 .

10.2 Cartesian representation

A complex number z is a symbol of the form

z = x + iy with x, y ∈ R.

The set of complex numbers is denoted by C;

C = { x+ iy | x, y ∈ R } .

From this Cartesian representation z = x+ iy of the complex number z ∈ C we
can visualise z as an ordered pair or a two-dimensional vector (x, y) ∈ R2, i.e. a
point in the Gaussian number plane.
For a complex number z = x+ iy with x, y ∈ R

Re(z) := x and Im(z) := y

denote the real part and imaginary part of z. Thus

z = Re(z) + i · Im(z) .

The set of real numbers, R, is obviously a subset of the complex numbers z ∈ C with
Im(z) = 0. The complex numbers with Re(z) = 0 are called the purely imaginary
numbers.
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10.3 Calculation operations

10.3 Calculation operations

Complex numbers are calculated according to the usual rules of arithmetic in the
real numbers. In doing so, i is treated like a variable for which i2 = −1 applies, i.e.
powers ik that occur during the calculation are reduced to i = i1 again, so that a
Cartesian representation of a complex number is again the result of the calculation.
The following concept is also needed here: the conjugate complex number z of
z = x+ iy is the complex number

z = x+ iy := x− iy for x, y ∈ R.

Graphically interpreted in the Gaussian number plane, this corresponds to reflection
on the real axis.

0 1

1

Re

Im

z = 4 + 3i

z = 4 − 3i
_

i = 0 + 1i

1 = 1 + 0i

Re(z)

Im(z)

The basic arithmetic operations can now be performed. Let a, b, c, d ∈ R.

• Addition. This is performed component by component:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

• Subtraction. This is also done component by component:

(a+ ib) − (c+ id) = (a− c) + i(b− d)

• Multiplication. This is expanded:

(a+ ib) · (c+ id) = ac+ ibc+ iad+ i2bd = (ac− bd) + i(bc+ ad)

• Division. The denominator is made real by extending the fraction with the
conjugate complex number of the denominator:

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=

(ac+ bd) + i(bc− ad)
c2 + d2

=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2
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10 Complex Numbers

• Exponentiation with exponent n ∈ N. Repeated multiplication is performed.
The following applies

(a+ ib)0 := 1 and (a+ ib)n+1 = (a+ ib) · (a+ ib)n.

The integral powers of i are important here. For n ∈ Z,

in =


1 , if n leaves a remainder of 0 when divided by 4
i , if n leaves a remainder of 1 when divided by 4

−1 , if n leaves the remainder 2 when divided by 4
−i , if n leaves the remainder 3 when divided by 4

10.4 Euler’s representation

For a complex number z = x+ iy with x, y ∈ R we consider its representation as a
vector in the Gaussian number plane in polar coordinates,

z = r (cosφ+ i sinφ) with r ≥ 0 and −π < φ ≤ π.

The magnitude |z| of z is

|z| :=
√
x2 + y2 =

√
z · z = r ≥ 0

and the (principal) argument arg(z) of z is

arg (z) = φ with − π < φ ≤ π.

The angles φ+ 2kπ for k ∈ Z are called the arguments of z. Note that all of these
angles determine one and the same complex number z, i.e.,

z = r(cos(φ+ 2kπ) + i sin(φ+ 2kπ)) for all k ∈ Z,

and that the principal argument is uniquely determined by the requirement that φ is
in the interval −π ≤ φ ≤ π.

0 1

1

Re

Im

z

Re(z)

Im(z)

ϕ

r =
 |z |
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10.5 Conversion between Cartesian and polar coordinates

Euler’s formula gives the Euler form of a complex number z = x+ iy for x, y ∈ R,

z = reiφ with r = |z| and φ = arg z.

This representation simplifies some calculations with complex numbers. Let r, s ≥ 0
and φ,ψ ∈ (−π, π]. Then, using the power laws, the following applies:

• Multiplication: reiφ · seiψ = (rs) ei(φ+ψ)

• Division: For s > 0 we have
reiφ

seiψ
=

r

s
ei(φ−ψ)

Now the basic arithmetic operations in the Gaussian number plane can be interpreted
geometrically.

• Addition and subtraction are the usual (i.e. component-wise) operations for
(two-dimensional) vectors.

• In multiplication, the absolute values of the two operands are multiplied and
the arguments added. This is therefore a so-called rotation stretch.

• The transition from z to the complex conjugate number z corresponds to a
reflection about the real axis.

10.5 Conversion between Cartesian and polar coordinates

First, we should remember the connection between the angular measures. A full
circle of 360◦ corresponds to 2π. Thus

φ in degrees = (φ in radians) · 180
◦

π
.

In particular, 90◦ = π/2 and 180◦ = π.

Given a point z = (x, y) ∈ R2 (in the Cartesian coordinate system), its polar
coordinates (r, φ) are given by

r = |z| =
√
x2 + y2 ≥ 0

and φ as the solution of the system of equations

r cosφ = x and r sinφ = y with φ ∈ (−π, π] .

This trigonometric system of equations can be solved for x ̸= 0 by finding a solution
ψ of tanψ = y/x, for example

ψ = arctan
( y
x

)
∈
(
−π
2
,
π

2

)
,
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10 Complex Numbers

and then, using the signs of x and y, ensuring that the angle points in the correct
quadrant, i.e. φ = ψ + kπ with the correct value of k ∈ Z.

x y φ =

≥ 0 = 0 0
< 0 = 0 π
= 0 > 0 π/2
= 0 < 0 −π/2

x y φ ∈
> 0 > 0 (0, π/2)
> 0 < 0 (−π/2, 0)
< 0 > 0 (π/2, π)
< 0 < 0 (−π,−π/2)

Sign schemes:

sin :
+ +

− − cos :
− +

− +
tan :

− +

+ −

Given a point in polar coordinates z = (r, φ) ∈ [0,∞) × (−π, π], its cartesian
coordinates (x, y) are given by

x = r cosφ and y = r sinφ .

10.6 Tasks

Calculate

1. (1 + 2i) + (4− 3i), (2 + 4i) + 3, (4 + 2i)− 2i

2. (1 + 2i) · (4− 3i), (3 + 2i) · (3− 2i, (1 + 3i) · (−1 + 3i)

3.
1 + 2i

4− 3i
,
3 + 2i

3− 2i
,

1 + 3i

−1 + 3i

Exercise The complex numbers are given by

z1 = −2i z2 = −3 z3 = −1 + 2i z4 = −4− 3i

z5 = eπ/4z6 = eiπ/4 z7 = 2e−
3π
4

iz8 = −1

2
ei·3π/2

1. Plot the numbers in the Gaussian number plane.

2. Calculate their absolute value and their principal argument.

3. Convert from the cartesian to the Euler form and vice versa.

B. G. Teubner Leipzig, 1996.
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